498 research outputs found

    Dust effects on the derived Sersic indexes of disks and bulges in spiral galaxies

    Full text link
    We present a theoretical study that quantifies the effect of dust on the derived Sersic indexes of disks and bulges. The changes in the derived parameters from their intrinsic values (as seen in the absence of dust) were obtained by fitting Sersic distributions on simulated images of disks and bulges produced using radiative transfer calculations and the model of Popescu et al. 2011. We found that dust has the effect of lowering the measured Sersic index in most cases, with stronger effects for disks and bulges seen through more optically thick lines of sight.Comment: 3 pages, 2 figures, to appear in the Proceedings of the IAU Symposium No.284, "The Spectral Energy Distribution of Galaxies", 5-9 sept. 2011, editors Richard J. Tuffs and Cristina C. Popesc

    Modelling the Pan-Spectral Energy Distributions of Starburst & Active Galaxies

    Full text link
    We present results of a self-consistent model of the spectral energy distribution (SED) of starburst galaxies. Two parameters control the IR SED, the mean pressure in the ISM and the destruction timescale of molecular clouds. Adding a simplified AGN spectrum provides mixing lines on IRAS color : color diagrams. This reproduces the observed colors of both AGNs and starbursts.Comment: Poster Paper for IAU 222: The Interplay among Black Holes, Stars and ISM in Galactic Nucle

    Radioactivity and Electron Acceleration in Supernova Remnants

    Full text link
    We argue that the decays of radioactive nuclei related to 44^{44}Ti and 56^{56}Ni ejected during supernova explosions can provide a vast pool of mildly relativistic positrons and electrons which are further accelerated to ultrarelativistic energies by reverse and forward shocks. This interesting link between two independent processes - the radioactivity and the particle acceleration - can be a clue for solution of the well known theoretical problem of electron injection in supernova remnants. In the case of the brightest radio source Cas A, we demonstrate that the radioactivity can supply adequate number of energetic electrons and positrons for interpretation of observational data provided that they are stochastically pre-accelerated in the upstream regions of the forward and reverse shocks.Comment: 6 pages, 1 figure, revised version accepted to Phys.Rev.

    Shear forming of 304L stainless steel – microstructural aspects

    Get PDF
    Shear forming is an incremental cold forming process. It transforms 2D plates into 3D structures commonly consisting of conical geometry. Roller(s) push the blank onto a cone-shaped mandrel, resulting in a decrease of the initial thickness. The shear forming process has diverse advantages, such as improved material utilisation, enhanced product characteristics, good surface finish, consistent geometric control and reduced production costs. Shear forming has potential applications in a wide range of conical geometries used within advanced aerospace structures, which are currently manufactured from bulk forgings with high associated machining costs. Research findings related to shear forming have been published over the past two decades, however, important remaining questions have still to be answered, with this paper addressing one such gap associated with the material deformation mechanism. Several studies have demonstrated the impact of key process variables on the final geometry and surface roughness, such as the feeds, roller nose radius and mandrel/roller offset. Although the material outputs are essential, as they link directly with the mechanical properties of the final components, the microstructure and texture of the material after shear forming have rarely been studied. Achieving a greater understanding in this area could reduce the reliance upon mechanical testing to validate the process and ease the exploitation route of the technology into advanced aerospace applications. Firstly, this paper presents the principle of shear forming and its related terminology. Then, a brief overview of the shear forming process including its history and origin is given. The areas of focus are a selection of the main variables encountered within this process which could impact the final properties. The generation of local stresses due to deviations from the sine law, the angle variations, and forces required during the forming operation are also considered. This is explored in the context of forming 304L stainless steel plates

    Spitzer Observations of Cold Dust Galaxies

    Full text link
    We combine new Spitzer Space Telescope observations in the mid- and far-infrared with SCUBA 850 micron observations to improve the measurement of dust temperatures, masses and luminosities for 11 galaxies of the SCUBA Local Universe Galaxy Survey (SLUGS). By fitting dust models we measure typical dust masses of 10E7.9 M_sol and dust luminosities of ~ 10E10 L_sol, for galaxies with modest star formation rates. The data presented in this paper combined with previous observations show that cold dust is present in all types of spiral galaxies and is a major contributor to their total luminosity. Because of the lower dust temperature of the SCUBA sources measured in this paper, they have flatter Far-IR nu F_nu(160um)/nu F_nu(850um) slopes than the larger Spitzer Nearby Galaxies Survey (SINGS), the sample that provides the best measurements of the dust properties of galaxies in the nearby universe. The new data presented here added to SINGS extend the parameter space that is well covered by local galaxies, providing a comprehensive set of templates that can be used to interpret the observations of nearby and distant galaxies.Comment: Accepted by A.J. 16 pages, 10 figures, 7 tables. High resolution version at http://mips.as.arizona.edu/~cnaw/slugs_hires.pd

    Modelling the spectral energy distribution of galaxies. I. Radiation fields and grain heating in the edge-on spiral NGC891

    Get PDF
    We describe a new tool for the analysis of the UV to the sub-millimeter (sub-mm) spectral energy distribution (SED) of spiral galaxies. We use a consistent treatment of grain heating and emission, solve the radiation transfer problem for a finite disk and bulge, and self-consistently calculate the stochastic heating of grains placed in the resulting radiation field. We use this tool to analyse the well-studied nearby edge- on spiral galaxy NGC 891. First we investigate whether the old stellar population in NGC 891, along with a reasonable assumption about the young stellar population, can account for the heating of the dust and the observed far-infrared and sub- mm emission. The dust distribution is taken from the model of Xilouris et al. (1999), who used only optical and near-infrared observations to determine it. We have found that such a simple model cannot reproduce the SED of NGC 891, especially in the sub-mm range. It underestimates by a factor of 2–4 the observed sub-mm flux. A number of possible explanations exist for the missing sub-mm flux. We investigate a few of them and demonstrate that one can reproduce the observed SED in the far-infrared and the sub-mm quite well, as well as the observed radial profile at 850 µm. For the models calculated we give the relative proportion of the dust radiation powered by the old and young stellar popula- tions as a function of FIR/sub-mm wavelength. In all models we find that the dust is predominantly heated by the young stellar population
    • …
    corecore